FlowFusion
Learn about data reconciliation and how we apply the concept to provide our customers with the best possible flow rate estimates given all their measurements.
The challenge of combining all available flow rate information
Many oil and gas production systems have varying degrees of redundancy for different wells. Some wells have several redundant rate sources, with multiphase flow meters (MPFM) and virtual flow meters (VFM) ensuring real-time rate monitoring. Other wells have their flow rates measured only intermittently, e.g. when they are routed to a test separator. In some cases, there might even be wells without a direct way of measuring their flow rates. For example when the produced hydrocarbons are mixed with production from other wells before this commingled flow is measured.
There are numerous possible setups, but there exists a method that can be applied to all kinds of topologies and instrumentation setups to provide the most accurate flow rates.
Imagine a production system like the one in the illustration. A is a well with an MPFM, and B is a well with no direct measurements. The flow from wells A and B are commingled before the combined flow is measured first by an MPFM in C and then a separator in D. Assuming steady-state production, we know by the law of mass balance that the flow through MPFM C and separator D must be the same. Knowing this, we can calculate the most likely flow through MPFM C and separator D as a weighted average of the two measurements, depending on the uncertainties of the MPFM and the separator. Also, from the mass balance, we know that the sum of the flow from well A and well B must be equal to the commingled flow. We can now calculate the estimated flow rate of well B as the commingled flow minus the MPFM measurement of well A.
FlowFusion (FF) is our industry-tested software service for reconciliation and allocation. It is a fully data-driven approach that exploits the information that lies in production data, such as quantifiable uncertainties, well tests, redundant flow rate data, and detectable MPFM or VFM errors. The main methodology used for reconciliation is data validation and reconciliation (DVR), yet FF is also much more than just the reconciliation method.
We generally divide FF into four modules as illustrated below: data processing, uncertainty estimation, the reconciliation problem, and gross error detection.
Outcome - one high-quality soft tag for each flow phase
Flow rate reconciliation provides value for production teams, both for small and well-instrumented assets or large assets with fewer sensors per well. For a well with redundant measurements, it can help the engineer combine the measurements into one single source of truth for each of the phases. For sparsely instrumented systems the value is even greater, where this approach can estimate flow rates in parts of the system where there is little or no (real-time) knowledge of the flow rates.
FlowFusion as a service
As with NeuralCompass VFM, FF is offered as-a-service. We connect automatically to your databases and if set up, FF is smoothly integrated with the Well Test Application. FF therefore operates with low intrusiveness in your everyday work life and can, if you allow it, be your new colleague for smarter allocation.
Real-life results
The figure below illustrates an example where the data processing module comes in handy. Here we see that VFM 1 has suddenly dropped to a new and likely faulty value. With two algorithms for error detection, stray and frozen detections, this behavior can be easily captured and, given the sensor redundancy, such sensors can be automatically filtered out of the reconciliation problem. Observe, for instance, that the white FF rate is not drawn towards the faulty estimates of VFM 1 - evidence that VFM 1 is filtered out.
You can find more information about FlowFusion in one of our newest publications: